(1) 数字电路的运行与源阻抗
如第2章的章节2-3所述,在电路运行中,数字电路的电源和接地中会产生长钉形的电流。这种电流将噪声感应到电源,使电源电压发生波动,导致电路无法稳定运行。它也会更容易引起信号波形和产生噪声方面的问题。
防止电源电压波动的功能通过源阻抗[参考文献 5]来表示。源阻抗是电源品质的一个指标,表示为图3-4-2(b)中连接数字IC(负载)的位置处(电源端子等)电源侧的阻抗。
(2) 电源电压波动的影响
图3-4-3中的示意图解释了当噪声被感应到数字IC电源时整个设备的噪声产生的影响。IC电源电压波形如图中间所示。根据长钉形的波形,可以发现这是数字电路运行中感应的噪声。在此,长钉形的波形被称为电源电压的波动。这种效应会干扰电路的稳定运行和增速,或将噪声扩散至电源线或信号线,或使信号波形失真,如图中(1)到(4)所示。如果扩散至电源线的噪声由电缆发射,则会成为关乎噪声规定的问题。
图3-4-3 电源电压波动的影响
(3) 电源噪声的频谱
电源电压的波动源自在数字信号上升和下降瞬间流经的电流。因此,如果噪声源的电路很简单,电源电压波动相关的噪声也具有像信号谐波一样的离散分布频谱。图3-4-4给出了一个实验的示例,其中以20MHz运行的数字IC的电源发射噪声。电源电压每隔50ns(20MHz)呈现出长钉形,而且可以发现当噪声发射时,每隔20MHz就可以观察到噪声频谱。
图3-4-4 观察数字IC电源噪声的实验
(4) 源阻抗的频率特征
为减少电源电压波动,要降低源阻抗。因为根据欧姆定律阻抗与电压存在比例关系,如果流经数字IC的电流恒定,电压波动就会减少,因为源阻抗也降低了。
图3-4-5给出了源阻抗测量结果的一个示例。一般而言,电源具有较小的源阻抗更好,这样能提供较高的电源性能和出色的降噪能力。
图3-4-5 源阻抗测量结果的示例
(5) 源阻抗测量
因为源阻抗非常小,所以很难进行测量。图3-4-5显示了通过网络分析仪测量的结果。由于测量值随测量探针的位置而改变,因此需要在既定的位置仔细进行测量。通常是在IC(负载)的电源端子和接地端子之间测量。为消除IC的影响并提高测量准确性,需要暂时将IC从PCB移开,然后测量PCB侧的阻抗。