(1) 差分信号的传输
近年来,差分信号更加普遍地用于高速数字传输,如USB等。差分信号包含共模噪声,但与之前所解释的稍有差别。
差分信号向1对线路的每条线路施加一个反相信号(如图5-2-15所示),接收器侧通过线路电压接收信号。如果这两个电流相互对称,电流成分只是普通模式,因此根据图5-2-5所示的机制会导致较小的噪声。
此外,如果从外侧接收到噪声感应,则不太可能受到影响。后文将会讲到,这是因为从外侧感应到电缆的噪声为共模,不会导致接收器的线路之间存在任何电压。
图5-2-15 差分信号的信号波形
(2) 差分信号中产生的共模噪声
但是,如果两条线路所传输信号有轻微的不平衡,则不平衡的成分会转变为共模。如图5-2-16所示,导致不平衡的因素包括:
(a) 上升或下降的时间偏差
(b) 上升和下降的速度偏差
(c) 电压或电流的大小偏差
(d) 叠加的共模噪声
您可能会说(a)到(c)是形成信号波形时出现的问题而不是噪声问题(称为信号完整性: SI)。了驱动器,接收器的IC原因以外,还可能是因为导线长度的差别,导线弯曲或者终端电阻器阻抗的差别导致信号波形产生不平衡。如上所述,观察到因信号波形不平衡导致的共模噪声,其形式为噪声频谱中信号频率的谐波。
(d)常出现于外部噪声施加到驱动器,接收器的电源及接地时。尽管噪声可能看似信号谐波,但却会在与信号频率完全不相关的频率处产生。
如果这些成分通过电缆传导,共模电流流过,则会成为噪声发射的原因。
图5-2-16 导致共模的因素
(3) 如何抑制差分信号中的噪声
如图5-2-17所示,共模扼流线圈用于阻止这样的共模电流,并抑制图5-2-16(a)到(c)中信号波形的不平衡。通常用在驱动器侧。但是,如果噪声在接收器侧产生,也可用在接收器侧。
此处使用的共模扼流线圈要选择能轻微衰减差模的元件,使其不会给差分信号造成负面影响。
除了共模扼流线圈,也使用屏蔽电缆来抑制差分信号中的噪声。信号对区域可使用两根同轴电缆。
对于图5-2-16(d)中的噪声,信号对区域也可使用共模扼流线圈或屏蔽。但是,如图5-2-17所示针对驱动器或接收器IC的电源使用EMI静噪滤波器更加有效。
图5-2-17 针对差分信号使用共模扼流线圈