(1) 难以制造完美的屏蔽
为了完全阻挡空间传导(目标不低于40 dB),如图4-2-9所示需要用屏蔽材料覆盖住目标对象的所有外围。但屏蔽的部件大,重量和成本就是问题。
图4-2-9 屏蔽配置
如图4-2-3和图4-2-5所示,即使只是在中间放置屏蔽板或是在极端的情况下,将地线敷设到有问题的线路两端(称为防护线),也具有一定程度的屏蔽效果。但这种不完整的屏蔽预期只能达到超高约10dB的效果。
(2) 消除导体传导区域内的噪声
电路需要一根天线来发射和接收噪声。如果可以在这根天线和电路之间插入EMI静噪滤波器来消除噪声,就可以消除噪声导体传导区域内的噪声,因此不需要屏蔽。
图4-2-10 使用EMI静噪滤波器抑制空间传导
尽管通常将采用电容器和线圈的低通滤波器用作EMI静噪滤波器,但各元件对噪声抑制的优势会因噪声感应机制而有所差异。
(3) 静电感应滤波器
例如,如图4-2-11所示的静电感应,假定由于调和噪声的浮动静电容量CS的静电容量较小,而使得电路阻抗非常高。这种情况下,旁路电容器要比铁氧体磁珠等阻抗元件更有优势。
图4-2-11 对静电感应有效的滤波器配置示例
(4) 电磁感应滤波器
对于如图4-2-12所示的电磁感应,重点是降低噪声源侧的电流以及噪声接收器侧的电压。阻抗元件对降低电流有优势,而旁路电容器则有利于降低电压。
上述阐释只是定性分析,阻抗的水平会因频率而异。但在考虑噪声感应机制的情形下选择电路,可以有效实施噪声抑制。
图4-2-12 对电磁感应有效的电路配置示例
4-2. 空间噪声传导及其应对措施 - 重点
静电感应是由电压引起的
电磁感应是由电流引起的
在相对远的距离内会经无线电波产生感应
屏蔽用于阻挡上述感应
EMI静噪滤波器用于导体传导的区域内,无需任何屏蔽就能阻挡感应