尽管就产生驻波和谐振对传输数字信号而言是不利的现象,但它们是研究噪声传导和制定应对措施时需要考虑的重要特性。当物体噪声频率升高时,需要基于噪声传导路径会像传输线一样(产生驻波)的假设采取相应措施和EMC措施。关于主要影响的示例将在下面讲述。
(1) 电压和电流随测量点变化
当针对EMC措施使用探针寻找噪声源时,即使在同一根导线上,但一个部分的噪声比较大,而其他部分的噪音比较小。此外,就电压和电流(磁场)而言,产生较大噪声的位置不相同。因此,如果噪声抑制前后的测量点不同,就无法正确评估产生的影响。
图3-3-20显示了频谱的变化,以此作为使用如图3-3-10所示测量系统移动测量点时导致变化的一个示例。当探针移动几厘米时,可以发现频谱的形状和电平出现变化。如果要找出噪声大的位置,就需要牢记这种变化,并在诸多点上进行测量,以确定噪声强度。
图3-3-20 各点频谱变化的示例
(2) 阻抗和EMC措施相关元件的作用随位置而变化
当产生驻波时,电压波腹(电流波节)处的阻抗高,而电压波节(电流波腹)处的阻抗低。阻抗的高低影响着该位置所连接EMC措施相关元件的效果。(但是,驻波的形状随频率而变化。因此,当连接一个EMC措施相关元件时,不能一概断定其对所有频率位置而言是有利或不利。)
例如,图3-3-21给出了图3-3-11中电流驻波随频率发生的变化。电流大的地方阻抗小(偏红),电流小的地方阻抗大(偏蓝)。可以发现这些位置根据频率发生变化。
一般而言,旁路电容器在阻抗降至超小值(电流波腹)的位置处具有较小的影响。图3-3-9用箭头了指出了这样的位置。如果在此位置处放置一个元件,其对频率的影响会减弱,因而需要另外使用铁氧体磁珠等。(可以移动此位置。但可能会在另一个频率处出现问题。)
相反,铁氧体磁珠在阻抗局部超高点可能影响更弱。
就降噪效果而言,结合了电容器和铁氧体磁珠的LC滤波器可能相对不那么容易受到阻抗波动的影响
图3-3-21 不同频率处驻波变化的示例
(3) 谐振频率随导线长度而变化
由于使传输线发生谐振的频率会产生很大的电压和电流,因此可能会导致很强的噪声发射。此频率随导线长度而变化。因此,如果像图中所示那样因重新布置IC而改变导线长度,则可能在意想不到的频率处使噪声增大。这类问题难以预测,因为电路图通常不会指明导线长度。
除了信号线之外,电源模式、电缆和屏蔽表面也可能形成传输线并导致谐振。这类谐振器就像完好的天线一样,会发射噪声。
图3-3-22 导线长度变化导致谐振改变
(4) 电缆或屏蔽板会产生驻波,成为状态完好的天线
就电缆连接至电子设备或者设备中使用金属板作为天线的机制而言,这样的导体可以被视为像传输线一样产生谐振。(但是,天线的特性阻抗一般不是恒定的。)
例如,如图3-3-21所示,当电子设备连接至有开放端的电缆时,电缆可以被视为有开口端的传输线路。在这种情况下,电缆产生的驻波在端部的电流为零(如图所示)。因此,基部的阻抗降低,电流在端部不连接任何元件的情况下流动。在电缆长度等于四分之一波长奇数倍的频率处,会产生谐振,因而也可能发射噪声。
这时,基部的阻抗较小,因此,噪声可能会由增加阻抗的元件(如铁氧体磁心)所控制。
图3-3-23 带开放端的电缆上产生电流
如图3-3-22所示,如果一端有金属板连接到地线(当一端连接了屏蔽板时),会产生接地部件处电压为零的驻波。使金属板长度等于四分之一波长奇数倍的频率会导致谐振,且很可能造成噪声发射和感应。如果两端都连接到地线,会产生在两端电压均为零的驻波,因此,使金属板长度等于二分之一波长整数倍的频率会导致谐振。为消除这样的问题,连接到地线的各点之间的间隔应缩短到噪声波长的大约十分之一或以下。
如上所述,在(较高)频率范围内,其中电子设备所使用导体的大小超过四分之一波长(例如10cm时使用750MHz),导体可能作为天线。如果物体噪声的频率很高,则需要注意物体尺寸与波长之间的关系。
图3-3-24 金属板连接到地线,金属板端作为天线