3-3-4 驻波
(1) 电压和电流随测量点变化

在一定频率处测量信号线上的噪声时,如果终端处产生反射,就会观察到如图3-3-8所示的驻波。在这种现象中,您会发现由于“入射波”(原信号)和反射波之间发生干扰,不同位置的信号长度会有所不同。这种驻波是传输线路复杂状况的根本原因,这将在后面进行描述。

如图3-3-9所示,驻波较强处称为“波腹”,而较弱处称为“波节”。波腹和波节的位置随频率而有所不同。就其本质而言,电压的波腹位置会成为电流的波节,而电压的波节位置会成为电流的波腹。

Standing wave

图3-3-8 驻波

Voltage standing wave and current standing wave

图3-3-9 电压驻波和电流驻波

(2) 观察数字信号中包含的驻波

图3-3-10到3-3-12提供了观察如图3-3-5所示数字信号波形的驻波的示例。在此,28cm长的信号线连接至33MHz时钟脉冲信号,以便观察信号线周围的磁场和电场。磁场和电场分别对应电流和电压。观察的频率为490MHz(33MHz时钟脉冲频率的第15次谐波),测量间隔为5mm。

在各图中,(a)的信号线右端有一个50Ω电阻器,以便近似得到阻抗匹配的状态,而(b)中有数字IC输入终端。

(3) 电流驻波

图3-3-11给出了磁场的测量结果。尽管(a)(有阻抗匹配的终端)显示传输线上具有恒定的磁场,(b)却指出了不同位置处的强磁场(红色)和弱磁场(蓝色)。这就意味着红色部分具有较大的电流。这被称为驻波,其中较高反射系数ρ会导致超大值和超小值之差更大。

(4) 电压驻波

图3-3-12给出了电场的测量结果。与电流的情形一样,(b)中使用数字IC作为负载,指示了不同位置处的变化。对比图3-3-11和图3-3-12会发现,就产生较强噪声的位置而言,电压和电流的情况正好相反(如图3-3-9所示)。

如果产生了驻波,噪声电平可能会随不同位置而变化。因此,不能只通过某个位置测得的单个结果确定噪声强度。

Measurement range of standing wave

图3-3-10 驻波的测量范围

Measurement result of magnetic field (current)

图3-3-11 磁场(电流)的测量结果

Measurement result of electric field (voltage)

图3-3-12 电场(电压)的测量结果

(5) VSWR

图3-3-12所示电压驻波的波腹(超高点)和波节(较低点)之比率称为VSWR(电压驻波比率),它是表示反射程度的指数。对于电压和电流而言,VSWR趋于一致。如果没有驻波,VSWR为1。反射越强,VSWR的值越大。根据图中的测量结果,(b)中观察到了驻波,指示VSWR约为4。

(6) 驻波周期为二分之一波长

驻波一个周期(波节到波节)的长度为频率的二分之一波长。因为后面将要讲述的阻抗变化和传输线谐振是以此驻波为基础的,它们可能在使传输线长度为二分之一波长整数倍的每个频率处反复出现。

图3-3-11和图3-3-12(b)的示例表明驻波的一个周期约为200mm,这说明传输线上的一个波长为400mm。在真空条件下测量的490MHz处的波长约为600mm,这表明在该传输线上波长缩短至三分之二。这个缩短比率会随着基板的相对介电常数而变化,介电常数越大,波长就会越短(这意味着电波在基板上减缓)。


目录